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Abstract:� Background: Prostate cancer (PCa) patients shall develop eventually incurable 
bone metastasis. Although advanced prostate cancer is the best known example of andro-
gen-dependent neoplasia, PCa patients after an excellent clinical response to adrogen abla-
tion therapies (medical or surgical castration) will ultimately become castration resistant 
(CRPC).�

Methods: Analysis of cell-cell interactions within the sites of osteoblastic metastasis has re-
vealed that survival factors (inhibitors of chemotherapy-induced apoptosis and androgen deprivation/medical 
or surgical castration-induced apopptosis) for prostate cancer cells are activated, locally. �

Results: The analysis of these cell-cell interactions between metastatic PCa cells and host tissue (bone) re-
vealed that insulin-like growth factor I, transforming growth factor beta 1 (TGF�1), interleukin 6 (IL-6) are 
the most important survival factors for prostate cancer cells residing in bones. Suppression of the bioavailabil-
ity of such survival factors which can achieved by the administration of dexamethasone plus somatostatin 
analogues (anti-survival factor therapy: ASF therapy) was proven an effective hormonal manipulation for the 
treatment of CRPC.�

Conclusion: The present review provides an update on bone microenvironment cell-cell interactions forming 
the concept of the ASF therapy for CRPC.�

Keywords: Bone metastasis, prostate cancer, targeted therapies, tumor microenvironment, anti-survival 
factor therapy (ASF).�

INTRODUCTION�

 Nearly all of the patients with advanced pros-
tate cancer will develop bone involvement espe-
cially at the level of the axial skeleton [1-7]. Once 
the disease is onto the bones, it is incurable by 
standard therapeutic modalities, including chemo-
therapy. The presence of extensive bone disease is 
firmly associated with cancer mortality [4, 8-10]. 
This castration-resistant phenotype is mainly de-
veloped at the metastatic sites [11-14] and in-
volves both hypersensitive and/or constitutively 
active androgen receptor (AR) expression on PCa 
cells as well as cell-cell interaction between stro-
mal cells and the bone microenvironment [14-16]. 
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The aim of the present paper is to review the 
pathophysiology of prostate cancer bone metasta-
sis and to discuss the future challenges in the 
therapeutic strategies.�

THE ESTABLISHMENT OF BONE METAS-
TASIS IN PCa�

 Two separate hypotheses address the preferen-
tial invasion of the axial skeleton by prostate can-
cer cells. The first is based on the existence of the 
Batson’s plexus which interconnects the bone mar-
row spaces of the vertebrae [17]. The lack of 
valves inside Batson’s plexus facilitates the direct 
hematogenous spread of cancer cells in the spine 
that allows colonization of the bone marrow. The 
second hypothesis is known as the ‘seed and soil’ 
theory [18] and implicates factors within the host 
tissue that facilitate the preferential establishment 
of PCa cells in bones. Accordingly, tumor cells 
“dock” into bone marrow endothelium and then 
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“lock” on the bone marrow endothelium-specific 
integrin [19]. The PCa cells then disrupt the base-
ment membrane of the bone marrow microvascu-
lature, thus allowing dissemination inside the ini-
tial metastatic niche [6, 20-22]. Metastatic growth 
in skeleton requires the invasion of PCa cells into 
the mineralized bone matrix, which will provoke a 
host tissue reaction that in PCa is mainly of os-
teoblastic nature. Mixed lesions (blastic & lytic) 
are also observed [23-25, 12, 26]. Notably, pros-
tate cancer with bone lesions is an incurable dis-
ease [6, 24, 28]. �

 The type of bone reaction to the metastatic 
growth of PCa cells is produced by the uncoupling 
of the bone remodeling process, locally [23, 25, 
29]. The lytic and blastic reactions are essentially 
the two extreme ends of the bone remodelling 
process [6, 23, 26, 30, 31]. The lytic component of 
bone reaction is attributed to humoral factors 
which activate local osteoclastogenesis and subse-
quently maintaining an active bone resorption 
process at the metastatic niche [30, 31]. The blas-
tic component is attributed to the presence of bone 
humoral factors that can stimulate preosteoblast 
differentiation and differentiaration, however, si-
multaneously suppressing bone resorptive process 
at the metastatic foci [32-35]. The initial dissemi-
nation of circulating tumor cells (CTCs) into bone 
marrow produces a specific cross-talk between 
metastatic PCa cells and the host tissue/bone mi-
croenvironment beeing at quiescence phase (pres-
ence of osteocytes & lining cells & absence of os-
teoclasts). Since the only cell type in nature that 
can resorb mineralised bone matrix is the mature 
osteoclast, it is important to understand that the 
PCa cells, although been disseminated into the 
bone marrow, are still unable to penetrate into the 
bone matrix [20, 36]. Therefore, the initial inva-
sion of metastatic PCa cells into the mineralized 
bone matrix can be achieved only by the activation 
of osteoclastogenesis within the metastatic niche. 
This is why the osseous metastases of PCa most 
frequently occur in metabolically active bones 
which contain red bone marrow and preosteoclasts 
[6, 37] as well as one full of nutrients, oxygen and 
growth factors that facilitate proliferation of PCa 
cells in the metastatic niche [4, 20, 37]. Thus, the 
micrometastasic phase of bone lesions is a com-
mon step for all types of ‘osteophilic’ cancers, im-
plicating activation of osteoclastogenesis and bone 
resortption, possibly via the process of epithelial-
mesenchymal transition (EMT) of circulating PCa 

cells. Growth factors produced either by PCa cells 
and/or the host tissue (bone) at the metastatic 
niche, such as insulin-like growth factors (IGFs), 
transforming growth factor �s (TGF�s), platelet-
derived growth factor (PDGF), interleukin (IL)-1 
and IL-6, can support the growth of PCa cells [36-
44]. PCa cells after their establishment into bones 
exhibit mesenchymal-to-epithelial transition 
(MET) [45]. The reversing of the EMT-to-MET, 
albeit controversial, seems to coordinate a process 
that is closely regulated by the receptor activator 
of nuclear factor k B ligand (RANKL)/RANK/ 
osteoprotegerin (OPG) system [46-48]. �

 RANK is a receptor that induces osteoclasto-
genesis and is mainly expressed on osteoclast pro-
genitors [49]. RANKL is a RANK ligand present 
on the surface of osteoblast lineage (osteocytes, 
lining cells, osteoblasts). The RANKL can be di-
rectly overexpressed by the PCa cells as result of 
EMT. RANKL binding to RANK leads to 
preosteoclast maturation and osteoclasts activation 
[49, 50]. OPG is a decoy receptor for RANKL that 
is normally secreted by osteoblasts but may also 
be produced by multiple other cell types, including 
PCa cells. Therefore, the initial phase of bone me-
tastasis PCa cells penetrating withing bone matrix 
found themselves under the bone microenviron-
ment-related growth factors which increase their 
ability to produce OPG. Binding of OPG to 
RANKL interferes with RANKL-RANK interac-
tion suppressing osteoclastogenesis and producing 
the apoptosis of osteoclasts [46, 47, 51]. In addi-
tion, the OPG is a survival factor for PCa cells 
suppressing the TRAIL-mediated apoptosis [52, 
53]. Other humoral factors, including the macro-
phage colony-stimulating factor, TGF-�, IL-1, IL-
6, parathyroid hormone-related protein (PTHrP), 
urokinase-type plasminogen activator (uPA) as 
well as matrix metalloproteinases (MMPs; particu-
larly MMP-2 and MMP-9) may modulate locall 
cell-cell interaction of PCa cells growing within 
bones matrix [32, 54-57]. Therefore, in contrast to 
other cancers, the predominance of the bone resor-
tive phase of the remodelling process at the initial 
metastatic niche of PCa cells is subsequenlty given 
its place to the bone forming predominance, which 
results to osteoblastic nature of bone metastases at 
the late stage [32, 55]. The ability of PCa cells to 
produce OPG is the key factor for such osteoblas-
tic predominance [51, 58-64]. Based on these find-
ings, bone targeted therapies should address these 
bone microenvironment cell-cell interactions when 
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is attempted to produce significant clinical re-
sponses in CRPC and chemotherapy-resistant PCa 
patients.  

BONE METASTASIS MICROENVIRON-
MENT-RELATED SURVIVAL FACTORS 
AND CRPC�

 The bone microenvironment niche contains 
PCa survival factors, including IGF-I, TGF�, bone 
morphogenic proteins (BMPs), basic fibroblast 
growth factor (FGF), IL-1, IL-6, endothelin-1 (ET-
1) and PTHrP [58, 65-68]. Metastatic PCa cells 
synthesize uPA [37, 55, 69, 70] which can produce 
the activation of other proteases such metallopro-
teinases (MMPs) [55, 69, 71, 72]. uPA and MMPs 
via the proteolysis of the IGF-binding proteins 
(IGFBPs) regulate IGFs bioavailability and the 
signaling of the type I IGF receptor (IGF-IR) [69], 
thus enhancing IGF-I survival of PCa cells [69-
74]. In addition, activation of latent TGF�s in bone 
matrix facilitate both the migration/invasion and 
survival of PCa cells [75, 76, 71, 72]. Moreover, 
the hepatocyte growth factor (HGF) in bone matrix 
induces PCa cell proliferation and invasion by 
binding to c-Met [77-79]. The IL-6 [80, 81] and 
endothelins (ET-1, ET-2 and ET-3) [82] can block 

apoptosis of PCa cells, actining as survival foctors 
for PCa cells [83]. ET-1 plays also a key role in 
the osteoblastic response of bone to metastatic PCa 
[66, 84-87]. �

 A number of mechanisms that contribute to 
PCa progression to castration resistance [15, 88] 
have implicated an increased sensitivity of the AR 
to androgens (specific mutations or gene amplifi-
cation), mutations producing constitutively active 
AR, AR activation by other steroids, even antian-
drogens, coactivators production that increase AR 
activity, extracellular peptide signals that enhance 
downstream AR events in the presence of very low 
circulating androgens and cross-talking of AR ac-
tivity by other growth signaling pathways [15, 88-
98].�

 Therefore, therapeutic strategies should priori-
tize targeting of the tumor microenvironment to 
design the “anti-survival factor” (ASF) therapy for 
CRPC [71, 99-101]. Consequently, rather than fo-
cusing on direct PCa targeting, the ASF strategy 
attempts to increase sensitivity or to reverse refrac-
toriness to standard treatment regimens [4]. An-
drogen ablation therapy is achieved via bilateral 
orchiectomy, oral administration of diethylstilbe-
strol, gonadotropin-releasing hormone (LHRH) 

 

Fig. (1). Clinical evolution of prostate cancer to castration resistance. A high Gleason’s score (>7), high PSA leves at diagnosis 

(>20 ng/dl), presence of circulating cancer cells (CTCs) at diagnosis and definitely a positive bone scan indicate high risk for 

systemic/metastatic disease. Systemic disease and particularly the cell-cell interactions, established at the sites of bone metas-

tasis microenvironment involving mainly survival factors, such as insulin-like growth factor 1 (IGFs), interleukin 6 (IL-6) and 

transforming growth factor betas (TGF�s), can activate AR-mediated down-stream events, thus resulting an androgen-

independent, however, always AR-mediated growth and survival of prostate cancer cells, locally. These survival factors is the 

target of an alternative endocrine manipulation [oral dexamethasone therapy plus somatostatin analogue administration] in the 

form of an anti-survival factor therapy for advanced prostate cancer (ASF therapy). 
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agonists or the more recently developed LHRH 
antagonists, with or without combined administra-
tion of anti-androgens [99, 102, 103]. In the anti-
survival factor theraspy the activity of IGF-I can 
be targeted by dexamethasone which produces the 
blockade of the locally produced IGF-I, while 
long-lasting somatostatin analogs (SMAs) can be 
used to inhibit to GH-dependent liver production 
of circulating IGF-I [105]. SMAs have a very fa-
vorable safety profile, producing only minimal and 
non-life-threatening side effects such as moderate 
arterial blood pressure elevation, minor blood glu-
cose deregulation, mild gastrointestinal complaints 
and generally asymptomatic cholelithiasis [102, 
105, 106]. The goal of the ASF protocol was to 
reintroduce objective clinical response in CRPC. A 
recent meta-analysis indicated that the ASF strat-
egy (SM-A plus dexamethasone with continuation 
of androgen ablation therapy in CRPC) induced 
partial remission for at least 6 months in 59.5% of 
patients, as well as improve bone pain, perform-
ance status and quality of life [107]. The ASF 
paradigm is apparently not limited to IGF-I. Other 
bone microenvironment targets should be targeted 
and the disappointing results of clinical trials tar-
geting only IGF-I receptor (IGF-IR) have indi-
cated that downstream signaling cascades should 
be included [108]. 

CONCLUSION�

 PCa demonstrates a strong predilection to me-
tastasize to the bones of the axial skeleton produc-
ing mostly osteoblastic lesions. Treatment of 
CRPC is challenging and a cure to this disease re-
mains unattainable. However, a rapidly growing 
armamentarium of treatment strategies is fueled by 
our evolving understanding of the crosstalk be-
tween PCa cells and the bone microenvironment. 
Further elucidation of the complex interactions 
between PCa cells and the bone stroma within the 
metastatic niche will open up new avenues for 
therapeutic interventions toward prolonging sur-
vival and increasing the chance for cure. The con-
cept of ASF therapy has added to the clinician’s 
toolbox a low toxicity strategy that enhances the 
efficacy of existing treatment regimens for CRPC 
by exploiting the interaction between the bone 
niche and androgen pathways. �
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